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COMPLEX EIGENSOLUTIONS OF RECTANGULAR
PLATES WITH DAMPING PATCHES
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A new analytical, energy based approach that predicts the vibration characteristics of
a rectangular plate with multiple viscoelastic patches is presented. This paper extends the
method presented earlier by the authors that was applied to the determination of the
eigensolutions of viscoelastically damped beams. The method first relates all motion
variables of a sandwich plate in terms of the flexural displacement of the base structure.
Then the flexural shape function sets are incorporated in the Rayleigh–Ritz minimization
scheme to obtain a complex eigenvalue problem. This method allows for the visualization
of complex modes of all deformation variables including shear deformations of the
viscoelastic core that are the major contributors to the overall energy dissipation.
Comparison with the work of three prior investigators on a simply supported plate
validates the model for the limiting case of full coverage. Benchmark experimental
measurements are made on a plate with free edges, and five damping cases are considered.
Analytical predictions of natural frequencies, modal loss factors and complex modes for
all cases are in excellent agreement with modal measurements. A normalization scheme for
complex mode shapes has also been developed. Finally, simplified loss factor estimation
procedures are presented to illustrate the additive effect of two damping patches.
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1. INTRODUCTION

In many practical plate and machinery casing structures, it is difficult to treat the whole
surface with constrained layer viscoelastic material. Further, it may indeed be desirable
to selectively apply one or more damping patches to control certain resonances. To study
such issues, an efficient analytical method is needed to predict modal properties of a
damped structure. Therefore, the research problem is formulated in the context of a
rectangular plate with arbitrary boundary conditions. Complex eigensolutions are sought
for various damping cases including full and partial coverage, as well as the configuration
with multiple damping patches. The method proposed in this paper first relates motion
variables for all layers of a sandwich plate in terms of the flexural displacement of the base
plate by using well-known equations of sandwich structures [1–5] and a minimization
scheme. Then the flexural shape function sets constructed by Nx and Ny shape functions
in x and y directions are incorporated in the Rayleigh–Ritz minimization scheme to obtain
a complex eigenvalue problem of dimension Nx ×Ny . This formulation yields efficient
calculations of various modal deformations in all layers. This work is an extension of the
analytical and experimental methodology we proposed recently for sandwich beams [1].

There is a vast body of literature on the dynamic analysis of sandwich beams and plates
as evident from the extensive references cited in two books on vibration damping [2, 3].
Most of the publications consider only the full damping coverage, however, Lall et al. [4]
have addressed the partial coverage issue. They analyzed a simply supported plate with
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a single damping patch using the Rayleigh–Ritz method and calculated the natural
frequencies and modal loss factors. A parametric study on the patch size and location was
reported. No experimental results were provided but the full coverage case was compared
with an analysis carried out earlier by Mead, as reported in reference [4]. This simply
supported plate case will be studied again in this article for the sake of verification.
Limiting case results of He and Ma [5] will also be included and compared with other
predictions. Since no prior experimental results are available, benchmark modal
measurements are conducted on a plate with free edges for several damping configurations.
Our method is then validated by comparing complex eigensolution predictions with modal
measurements. A normalization scheme for viewing complex modes is also developed.
Finally, design-oriented loss factor estimation procedures that examine the additive effect
of two damping patches are proposed.

2. ANALYTICAL FORMULATION

2.1.  

The structure of interest is a rectangular plate with Np damping patches attached, as
shown in Figure 1. Each patch p is of length lpx and width lpy and is located at (xp, yp) in
the Cartesian co-ordinates. Each patch has two layers: layer 1 is a metallic layer while layer
2 is made of the viscoelastic material. Note that each patch may be different in size,
thickness and material property. The base plate is assumed to be undamped and is
designated as layer 3. The boundary conditions are specified later when eigensolutions are
sought. Figure 2 shows sections of the plate in the xz and yz planes. All relevant variables
considered include: flexural w(x, y; t) displacement in the z direction, and in-plane
displacements u(x, y; t) and v(x, y; t) along x and y, respectively, and rotary (c) and shear
angles (g) in the xz and yz planes. These variables are included in three deformation vectors
rp

1, rp
2, and r3,

w w w
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1 up
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Figure 1. Multiple constrained layer damping patches for a rectangular thin plate with arbitrary boundary
conditions.
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Figure 2. Undeformed and deformed segments along with variables in all layers. (a) xz plane, (b) yz plane.

where subscripts 1, 2 and 3 denote the layer numbers. Note that shear deformations are
not included here because they can be obtained from the spatial derivatives of w(x, y; t)
and the rotation of layer 2. For elastic layers 1 and 3, shear deformations are assumed
to be zero for the sake of simplification.

2.2.  

The strain energy (U) of the composite plate with reference to Figures 1 and 2 is written
as

U= s
Np

p=1 gg
p

[12(Drp
1)TEp

1(Drp
1)+ 1

2(Drp
2)TEp

2(Drp
2)] dx dy+g

ly

0 g
lx

0

1
2(Dr3)TE3(Dr3) dx dy, (2)
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T 1

System parameters used for rectangular plate example as described in the literature [4].
All edges assume simple supports. Refer to Figure 1 for nomenclature

Example I [4] Example II [4]

E1 and E3 (Pa) 207×109 207×109

Material G2 (Pa) 4×106 450×106

properties h2 0·38 0·38
r1 and r3 (kg/m3) 7800 7800
r2 (kg/m3) 2000 2000

h1 5 2·5
Dimensions h2 5 2·5
(mm) h3 5 5

lx 400 400
ly 400 400

where D is the differential operator matrix defined as

12/1x2 0 0 0 0

12/1x 1y 0 0 0 0

12/1y2 0 0 0 0

0 1/1x 0 0 0

D= 0 0 1/1y 0 0 , (3)G
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1/1x 0 0 −1 0

0 1/1y 0 0 −1

T 2

Comparison between published [4, 5] and proposed methods for Example I. See Table 1 for
rectangular plate parameters

Lall et al. [4] Mead [4] He and Ma [5] Proposed

Natural frequency v (rad/s)
Mode (1, 1) 975·17 975·00 975·00 974·91
Mode (1, 2) 2350·79 2350·83 2350·80 2350·80
Mode (2, 1) 2350·79 2350·83 2350·80 2350·80
Mode (2, 2) 3725·33 3725·60 3725·60 3725·60

Loss factor h (%)
Mode (1, 1) 4·431 4·385 4·385 4·386
Mode (1, 2) 1·918 1·911 1·911 1·911
Mode (2, 1) 1·918 1·911 1·911 1·911
Mode (2, 2) 1·224 1·221 1·221 1·221
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Figure 3. Patch size and location for Example II, as by Lall et al. [4]. The base plate is simply supported on
all edges. Here lp varies from 0 to 0·4 m. Refer to Table 1 for more details.

and Ep
1, Ep

2 and E3 are elasticity matrices that are defined as

Ep
i = &E

p
w,i

0
0

0
Ep

uv,i

0

0
0

Ep
g,i', p=1, . . . , Np for i=1, 2; i=1, 2, 3; (4)

where

Ep
w,i =

Ep
i (hp

i )3

12(1− n2
i ) &10ni

0
2(1− ni )

0

ni

0
1', (5a)

1 ni 0 0

ni 1 0 0
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Ep
uv,i =

Ep
i (hp

i )3

2(1− n2
i ) 0 0 (1− ni )/2 (1− ni )/2

,

0 0 (1− ni )/2 (1− ni )/2

Ep
g,i =Gp

i hp
i $1 0

0 1%, (5b, c)

and E, G, n and h are Young’s modulus, shear modulus, Poisson’s ratio and thickness,
respectively. The kinetic energy (T) of the composite plate due to flexural, longitudinal and
rotary motions is expressed as

T= s
Np

p=1 gg
p

[12 ṙ
pT
1 H1 ṙp

1 + 1
2 ṙ

pT
2 H2 ṙp

2] dx dy+g
ly

0 g
lx

0

1
2

ṙT
3 H3 ṙ3 dx dy, (6)
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where

hp
i 0

hp
i

Hp
i = rp

1 G
G

G

G

G

K

k

hp
i G

G

G

G

G

L

l

, p=1, . . . , Np for i=1, 2:

(hp
i )3/12

0 (hp
i )3/12

i=1, 2, 3 (7)

2.3.   

To implement the Rayleigh–Ritz minimization scheme, deformation vectors are
approximated as

rp
1(x, y, t)=Sp

1(x, y)q(t), rp
2(x, y, t)=Sp

2(x, y)q(t), r3(x, y, t)=S3(x, y)q(t),

(8a–c)

Figure 4. Comparison between published and proposed methods for Example II. (a) First natural frequency;
(b) first modal loss factor. w, Proposed method; ×, He and Ma [5]; —, Lall et al. [4].
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Properties of sandwich plate used for benchmark experiments

Stiffness Density Thickness Material
(N/m2) (kg/m3) (mm) loss factor h2(f )

Base Layer 3 E3 =180×109 r3 =7350 h3 =2·4
platea

Patch Ab Layer 1 E1 =180×109 r1 =7720 h1 =0·79
Layer 2 G2 =0·25×106 r2 =2000 h2 =0·051 h2,A(f )

=4·07×10−3f−0·112

Patch Bb Layer 1 E1 =180×109 r1 =7720 h1 =0·43
Layer 2 G2 =0·25×106 r2 =2000 h2 =0·051 h2,B(f )

=1·06×10−3f+0·131
a 342·9×266·7 mm with F–F–F–F boundary.
b Material provided by the Wolverine Gasket Company. Codes for the patches are: A=WXP-1828,

B=WXP-18070.

where q is the column vector of generalized displacements of the system, and Sp
1, Sp

2 and
S3 are shape function matrices with Ns admissible function sets

Sp
1 = [Sp

1,1 · · · Sp
1,k · · · Sp

1,Ns
], Sp

2 = [Sp
2,1 · · · Sp

2,k · · · Sp
2,Ns

], (9a, b)

S3 = [S3,1 · · · S3,k · · · S3,Ns ]. (9c)

Note that Sp
1,k, Sp

2,k and S3,k are the kth shape function set of the deformation variables of
layers 1, 2 and 3, respectively:

fw,k fw,k fw,k

fp
u1,k fp

u2,k fu3,k
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1,k = fp
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cx1,k fp

cx2,k fcx3,k

fp
cy1,k fp

cy2,k fcy3,k

(10)

Here the flexural shape function fw,k (x, y) is the kth element of the flexural shape function
row vector Fw =[fw,1 · · · fw,k · · · fw,Ns ]. Note that Fw (x, y) is obtained from the
following equation where Xw (x) is a column vector of dimension Nx and Yw (x) is a row
vector of dimension Ny . Elements of Xw and Yw must be chosen such that they satisfy the
geometrical boundary conditions of the plate in the x and y directions, respectively:

Fw (x, y)=Col [Xw (x)Yw (y)], (11)

where Col is a matrix operator that converts a matrix of dimension (Nx , Ny ) to a row vector
of dimension Ns =Nx ×Ny . This operation assigns element (m, n) of the matrix to element
k of the row vector where k=(m−1)Ny + n; m=1 · · · Nx , and n=1 · · · Ny . The flexural
shape function fw,k (x, y) is used as the ‘‘master’’ shape function vector while all other shape
functions are ‘‘slaves’’ and should be calculated from fw,k (x, y). Some of the slave shape
functions can be obtained explicitly while the rest must be solved for by a minimization
scheme.
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3. SHAPE FUNCTION REDUCTION

Some of the shape functions, as defined earlier by equation (10), can be deduced directly
from their kinematic relationships with fw,k . First, relationships between in-plane shape
functions of layers 1 and 3 are employed which can be written by extending the integrated
form of the weak core assumption as stated in reference [1]:

fp
u1,k =−epfu3,k + dp

x,k, fp
v1,k =−epfv3,k + dp

y,k, (12a, b)

Figure 5. Damping patch cases for the benchmark plate used for experiments studies. (a) Case A; (b) Case
B; (c) Case C; (d) Case D; (e) Case E. All edges are free.
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Modal indices for the benchmark plate example

Natural frequency range (Hz)
Mode r from theory Modal indexa

1 830 94 (2, 2)
2 1090 124 (2, 0)
3 1840 190 (0, 2)
4 1990 207 (2, 1)
5 2430 255 (1, 2)
6 2910 308 (3, 0)
7 3770 406 (3, 1)
8 3850 411 (2, 2)

a Nodal lines along x and y.

where

ep =
E3h3

Ep
1hp

1

[1− (vp
1)2]

[1− (vp
3)2]

; p=1, . . . , Np .

Note that dp
x,k and dp

y,k are constants that relate deformation shapes fu3,k and fv3,k to the
corresponding fp

u1,k and fp
v1,k for each patch p. Second, the deformations in layer 2 can be

rewritten as follows by observing the kinematic relationship in Figure 2:

fp
u2 =

hp
1 − h3

4
1fw

1x
+

1− ep

2
fu3 + 1

2d
p
x, fp

v2 =
hp

1 − h3

4
1fw

1y
+

1− ep

2
fv3 + 1

2d
p
y , (13a, b)

fp
cx2 =−

hp
1 + h3

2hp
2

1fw

1x
+

1+ ep

hp
2

fu3 −
1
hp

2
dp

x, fp
cy2 =−

hp
1 + h3

2hp
2

1fw

1y
+

1+ ep

hp
2

fv3 −
1
hp

2
dp

y .

(13c, d)

The kth component of the strain energy of plate (Uk ) with admissible function set Sp
1,k,

Sp
2,k and S3,k is as follows where qk is the corresponding generalized displacement:

Uk = 1
2Kkq2

k, (14)

Kk = s
Np

p=1 gg
p

[(DSp
1,k)TE1(DSp

1,k)+ (DSp
2,k)TEp

2(DSp
2,k)] dx dy

+g
ly

0 g
lx

0

(DS3,k )TE3(DS3,k ) dx dy. (15)

Assume that the corresponding displacements fu3,k and fv3,k are combinations of row trial
function vectors Cu (x, y) and Cv (x, y):

fu3,k =Cu (x, y)cu,k , fv3,k =Cv (x, y)cv,k , (16a, b)

where cu,k and cv,k are column vectors containing coefficients that need to be determined
while Cu (x, y) and Cv (x, y) are the row trial function vectors. Both Cu (x, y) and Cv (x, y)
are obtained from their x components Xu (x) and Xv (x) and y components Yu (y) and Yv (y),
respectively:

Cu (x, y)=Col [Xu (x)Yu (y)], Cv (x, y)=Col [Xv (x)Yv (y)], (17a, b)
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where Xu and Xv are column vectors of dimension Nux and Nvx and Yu and Yv are row vectors
of dimension Nuy and Nuy whose elements satisfy geometrical boundary conditions in x and
y directions, respectively.

By substituting equations (12), (13) and (16) into equation (15) and minimizing Uk with
respect to the coefficients of cu,k , cv,k , dp

x,k and dp
y,k, a set of governing equations can be formed

in matrix form as

ACk =Bk , (18)

where

Auu Auv Au 0 Bu
k cu,k

Avu Avv 0 Av Bv
k cv,kG

G

G

K

k

G
G

G

L

l

G
G
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K

k

G
G
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l

G
G
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K

k

G
G

G

L

l

A=
(Au)T 0 Adx 0

, Bk = Bdx
k

, Ck = dx,k
, (19a–c)

0 (Av)T 0 Ady Bdy
k dy,k

T 5

Measured and predicted modal results for the benchmark plate with damping patches as
shown in Figure 5

Natural frequency fr (Hz) Modal loss factor hr (%)
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Mode Experiment Theory Experiment Theory

Case A (with single Patch A)
(1, 1) 90 84 0·32 0·22
(2, 0) 109 111 0·38 0·18
(0, 2) 199 184 0·51 0·67
(0, 1) 220 207 0·43 0·44
(1, 2) 259 253 0·34 0·41
(3, 0) 329 305 1·68 1·05
(3, 1) 422 405 0·39 0·32
(0, 2) 445 414 0·40 0·52

Case B (with single Patch B)
(1, 1) 86 82 0·32 0·25
(2, 0) 106 109 0·24 0·01
(0, 2) 204 188 1·34 1·05
(2, 1) 214 206 0·58 0·54
(1, 2) 259 255 1·52 1·36
(3, 0) 328 304 0·50 0·09
(3, 1) 416 405 0·58 0·66
(2, 2) 447 414 1·20 0·92

Case C (with Patches A and B)
(1, 1) 86 82 0·52 0·52
(2, 0) 106 109 0·52 0·19
(0, 2) 200 186 1·97 1·81
(2, 1) 214 207 0·88 0·93
(1, 2) 259 254 1·93 1·81
(3, 0) 322 301 2·30 1·13
(3, 1) 415 404 1·00 1·07
(2, 2) 442 411 1·97 1·41
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Measured and predicted modal results for limiting cases of benchmark plate as shown in
Figure 5

Natural frequency fr (Hz) Modal loss factor hr (%)
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Mode Experiment Theory Experiment Theory

Case D—baseline case (base plate without any patch)
(1, 1) 89 83 0·32 0
(2, 0) 107 112 0·15 0
(0, 2) 202 185 0·07 0
(2, 1) 218 207 0·13 0
(1, 2) 257 254 0·07 0
(3, 0) 336 308 0·07 0
(3, 1) 420 406 0·06 0
(2, 2) 447 417 0·04 0

Case E—fully covered case (plate with Patch A material)
(1, 1) 89 94 13 10
(2, 0) 111 124 17 12
(0, 2) 196 190 13 18
(2, 1) 200 199 10 10
(1, 2) –a 243 –a 11
(3, 0) 314 291 11 15
(3, 1) 393 377 10 14
(2, 2) 423 385 17 13

a Not found in the experiment.

and

dx,k =[d1
x,k · · · dp

x,k · · · dNp
x,k]

T, dy,k =[d1
y,k · · · dp

y,k · · · dNp
y,k]

T. (20a, b)

Sub-matrices of A and sub-vectors of Bk are obtained from the following:

Auu = s
Np

p=1

E3h3ep

1− (n3)2 gg
p
$0 1

1x
Cu1

T

0 1

1x
Cu1+

1− np
1

2 0 1

1y
Cu1

T

0 1

1y
Cu1% dx dy

+ s
Np

p=1

G2

hp
2
(1+ ep)2gg

p
$(Cu )T(Cu )+

1− np
2

2
(Cu )T(Cu )% dx dy

+
E3h3

1− (n3)2 g
ly

0 g
lx

0 $0 1

1x
Cu1

T

0 1

1x
Cu1+

1− n3

2 0 1

1y
Cu1

T

0 1

1y
Cu1% dx dy, (21a)
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Figure 6. Real part of deformation mode shapes of Case C for mode (1, 2). (a) Flexural mode; (b) shear mode
of layer 2 in the xz plane; (c) shear mode of layer 2 in the yz plane.
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Figure 7. Real part of deformation mode shapes of the full coverage case (Case E) for mode (1, 2). (a) Flexural
mode; (b) shear mode of layer 2 in the xz plane; (c) shear mode of layer 2 in the yz plane.
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Avv = s
Np

p=1

E3h3ep

1− (n3)2 gg
p
$0 1

1x
Cv1

T

0 1

1x
Cv1+

1− np
1

2 0 1

1y
Cv1

T

0 1

1y
Cv1% dx dy

+ s
Np
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Figure 8. Real part of flexural mode shapes of mode (1, 1) for all five cases. (a) Prediction; (b) measurement.
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Figure 9. Imaginary part of flexural mode shapes of mode (1, 1) for Case A. (a) Prediction; (b) measurement.
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Figure 10. Imaginary part of flexural mode shapes of mode (1, 1) for Case B. (a) Prediction; (b) measurement.
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Figure 11. Imaginary part of flexural mode shapes of mode (1, 1) for Case C. (a) Prediction; (b) measurement.
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Figure 12. Imaginary part of flexural mode shapes of mode (1, 1) for Case D. (a) Prediction; (b) measurement.
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Figure 13. Imaginary part of flexural mode shapes of mode (1, 1) for Case E. (a) Prediction; (b) measurement.

T 7

Weighting factors ar and br for equation (38) as
derived from analytical models

Mode r ar br

1 1·14 1·11
2 0·98 1·08
3 1·14 1·00
4 0·87 1·02
5 0·81 1·09
6 1·00 0·95
7 1·14 1·07
8 0·94 1·00
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T 8

Comparison between calculated and estimated modal loss factors of Case C based on the
analytical method

hr,C (%)
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Weighted additive method Simple additive method
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

Mode r Calculated Estimated Error Estimated Error

1 0·52 0·52 0 0·46 11
2 0·19 0·19 0 0·19 −1
3 1·81 1·81 0 1·72 5
4 0·93 0·93 0 0·98 −5
5 1·81 1·81 0 1·77 2
6 1·13 1·13 0 1·13 0
7 1·07 1·07 0 0·98 9
8 1·41 1·41 0 1·44 −2

where Hp =(hp
1 +2hp

2 + h3)/2. The coefficients of Ck can be calculated by

Ck =A−1Bk (22)

provided =A=$ 0. As a result, all entries in the kth shape function set Sp
1,k, Sp

2,k and S3,k can
be determined for a given flexural shape function fw,k . This process needs to be repeated
Ns times and then C is obtained as

cu cu,1 · · · cu,k · · · cu,Ns

cv cv,1 · · · cv,k · · · cv,NsG
G

G

K

k

G
G

G

L

l

G
G

G

K

k

G
G

G

L

l

C=
dx

=
dx,1 · · · dx,k · · · dx,Ns

. (23)

dy dy,1 · · · dy,k · · · dy,Ns

Then the entire shape function matrices Sp
1, Sp

2 and S3 are determined.

T 9

Comparison between measured, calculated and estimated modal loss factors of Case C based
on the experimental study. Estimation of hr,C without considering inherent damping of base

plate

hr,C (%)
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Estimated
Mode ZXXXXXXCXXXXXXV

r Measured Calculateda Weighted Simple

1 0·52 0·52 0·72 0·64
2 0·52 0·19 0·63 0·62
3 1·97 1·81 1·91 1·84
4 0·88 0·93 0·96 1·01
5 1·93 1·81 1·93 1·86
6 2·30 1·13 2·17 2·18
7 1·00 1·07 1·07 0·97
8 1·97 1·41 1·58 1·60

a From Table 8.
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T 10

Comparison between measured, calculated and estimated modal loss factors of Case C based
on the experimental study. Estimation of hr,CI with inherent damping measured in base plate

hr,CI (%)
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Estimated
Mode ZXXXXXXCXXXXXXV

r Measured Calculateda Weighted Simple

1 0·52 0·84 0·31 0·31
2 0·52 0·34 0·47 0·47
3 1·97 1·88 1·83 1·77
4 0·88 1·06 0·85 0·88
5 1·93 1·88 1·87 1·79
6 2·30 1·20 2·10 2·11
7 1·00 1·13 1·00 0·91
8 1·97 1·45 1·54 1·56

a Table 8 value plus inherent damping found in experiments.

4. COMPLEX EIGENVALUE FORMULATION

For harmonic vibration analysis at frequency v, the complex-valued Young’s modulus
and shear modulus of the viscoelastic material in layer 2 of patch p are represented by

E	 p
2(v)=Ep

2(1+ ihp
2(v)), G	 p

2(v)=Gp
2(1+ ihp

2(v)), (24a, b)

where i=z−1, and hp
2 is the material loss factor. Using equations (2), (6) and (8), rewrite

strain and kinetic energies in the complex-valued form as

U	 = 1
2qTK	 q, T= 1

2q̇TMq̇, (25a, b)

where the complex-valued stiffness (K	 ) and real-valued mass (M) matrices of the system
are defined as follows from equations (2) and (6)

K	 = s
Np

p=1 gg
p

[DSp
1)TE1(DSp

1)+ (DSp
2)TE	 2(DSp

2)] dx dy+g
ly

0 g
lx

0

(DS3)TE3(DS3) dx dy,

M= s
Np

p=1 gp

[Sp
1

TH1Sp
1 +Sp

2
TH2Sp

2] dx+g
l

0

S3
TH3S3 dx. (26a, b)

The complex eigenvalue problem of dimension Ns is then formulated for the following
matrix form of governing equations:

Mq̈+K	 q= 0. (27)

Eigenvalues (l	 r ) and eigenvectors (q̃r ) of this non-proportionally damped system problem
are complex-valued where r is the modal index. The undamped natural frequencies (vr )
and composite modal loss factors (hr ) are related to l	 r of equation (27) in the following
manner [1]:

vr =zRe (l	 r ), hr =
Im (l	 r )
Re (l	 r )

; r=1, . . . , Ns . (28a, b)
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Complex mode shapes of relevant deformation variables can be calculated from the
resulting eigenvectors q̃r of equation (27). For example, the complex flexural mode shape
is

w̃r (x, y)=Fw (x, y)q̃r . (29)

Complex in-plane mode shapes of layer 3 in x and y directions are

ũ3,r (x, y)=Cu (x, y)cu q̃r , ṽ3,r (x, y)=Cv (x, y)cv q̃r . (30a, b)

Complex shear deformation mode shapes of layer 2 in xz and yz planes are

g̃p
xz2,r(x, y)=

1
hp

2 $Hp 1Fw (x, y)
1x

−(1+ ep)Cu (x, y)cu + dp
x%q̃r ,

g̃p
yz2,r(x, y)=

1
hp

2 $Hp 1Fw (x, y)
1y

−(1+ ep)Cv (x, y)cv + dp
y%q̃r . (31a, b)

5. COMPARISON WITH LITERATURE

To validate the proposed theory, consider a rectangular plate (of dimension lx and ly )
with simple supports along all edges. This case with full surface damping has been analyzed
by Lall et al. [4], Mead (as reported in reference [4]) and He and Ma [5]. In particular,
He and Ma [5] have provided a closed form equation for full coverage. System parameters,
as defined by Lall et al. [4], are summarized in Table 1. For our study, analytical solutions
are obtained by using four flexural shapes of sine functions in each Xw or Yw . Also the
in-plane trial functions in u and v are constructed by using four trial functions for each
direction x or y, resulting in matrix A of equation (18) of size 32. For each flexural shape
function fw,k (x, y), vector Bk is constructed and coefficients in vector Ck =A−1Bk are
calculated to determine the kth shape function set Sp

1,k, Sp
2,k and S3,k . Then the entire shape

function matrices Sp
1, Sp

2 and S3 set are incorporated in the Rayleigh–Ritz minimization
scheme to obtain the complex-valued eigenvalue problem of size 16. Natural frequencies
and modal loss factors are then obtained by using equation (28) after solving the eigenvalue
problem.

First consider a simply supported square plate with full coverage, labelled here as
Example 1 in Table 1. Natural frequencies and modal loss factors of the first four modes
obtained from the literature [4, 5] are compared with results of our method. It is seen in
Table 2 that our predictions are nearly identical to the results of Mead [4] and He and
Ma [5]. They also match the results reported by Lall et al. [4] even though minor
discrepancies are seen. All methods essentially predict same results.

For Example II of Table 1, the base plate is kept the same but a square damping patch
of varying size (lpx = lpx = lp) as shown in Figure 3 is applied. This case was specifically
studied by Lall et al. [4]. Both layers (1 and 2) of the patch are thinner and the viscoelastic
core is stiffer than described in Example 1. Parametric studies of patch size (lp) variation
for the first natural frequency and modal loss factor as reported by Lall et al. [4] are carried
out and results are in Figure 4. Poor agreement between the two methods is seen. Next,
He and Ma’s closed form solution [5] is used again for the full treatment case. It is seen
that our results indeed match the closed form solution for the limiting case of lp = l.
Further validation is necessary and it is established through a series of modal experiments
as presented in the next section.
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6. EXPERIMENTAL VERIFICATION

6.1.  

A rectangular plate (lx =342·9 mm, ly =266·7 mm) under the F–F–F–F boundary
conditions is chosen as the benchmark example to experimentally verify our analytical
model where F denotes a free boundary. The plate is suspended freely and excited with
an impulse hammer. Structural acceleration is measured via a compact accelerometer (of
weight 1 g) that is attached near one corner of the plate. Response signals are fed to the
analyzer along with the excitation force and sinusoidal transfer functions are obtained.
First eight natural frequencies (fr ) and modal loss factors (hr ) are then extracted using the
half-power bandwidth method [1]. Two types of damping patches (designated here as
Patches A and B) with material properties and layer thickness, as specified in Table 3, are
applied in this study. Material properties of the viscoelastic core are obtained by adopting
the material property estimation technique we had developed earlier in reference [1].
Frequency-dependent material loss factor h2(v) and shear modulus G2(v) are obtained for
each damping patch. Since the variation in G2 is very small in the frequency range of
interest, G2 may be safely assumed to be spectrally-invariant in order to avoid solving the
eigenvalue problem with a frequency-dependent stiffness matrix.

Five damping cases for the rectangular plate including limiting cases are considered here,
as illustrated schematically in Figure 5. Case A denotes the plate with a single patch (Patch
A) attached away from all edges. Case B is the plate with Patch B attached at the edge.
The plate with both Patches A and B applied simultaneously is designated as Case C. Two
limiting cases constitute the baseline studies: Case D is the undamped base plate without
any damping patch, and Case E is the full coverage case when the plate is fully covered
on one side with Patch A material only. Many other damping configurations are possible
but these five cases are believed to be necessary and hence only these results are presented
here.

6.2.  

Natural frequencies and modal loss factor for the first eight modes have been measured.
Corresponding predictions are then obtained by using the analytical procedure as discussed
earlier. The number of shape functions is increased from four to eight and free–free beam
mode shapes are used as flexural trial shapes in both x and y directions. The material loss
factor of the viscoelastic core is assumed to be constant at the vicinity of a mode and only
one eigenvalue problem is solved for each mode. In addition, mode shapes are obtained
from eigenvectors q̃r by using equations (29)–(31). Modal indices that described nodal lines
along x and y directions are listed in Table 4. Comparisons of modal results as listed in
Table 5 and 6 show excellent agreement between experiment and theory for all cases.

One advantage of our method is the ease with which mode shapes of all deformation
variables may be viewed. Of importance here are the shear deformation modes of the
viscoelastic core in the xz and yz planes since they are the major contributors to the total
energy dissipation; note that these modes can not be measured. Figure 6 shows the
predicted flexural and shear deformation shapes of mode (1, 2) for Case C; compare these
with the results of Figure 7 for the full coverage case (E). It is observed that shear modes
of layer 2 in Case C show only segments of the full shapes corresponding to Case E. Also,
the amplitude of shear modes in the xz plane (gxz,2) is lower than that in the yz plane (gyz,2).
This can be explained simply by examining curvatures of the flexural mode in the x and
y directions. Since the flexural mode is close to a straight line along the y direction, the
viscoelastic core experiences small shear deformations in the xz plane (gxz,2). Conversely,
the large curvature in the y direction causes large shear deformations in the yz plane (gyz,2).
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6.3.   

Since the system is non-porportionally damped, complex modes need to be normalized
[6] before making any comparison between theory and experiment. The normalization has
to be carried out in the spatial domain on flexural mode shapes w̃r (x, y) instead of
considering a column of eigenvectors (q̃r ). The normalized expression of the flexural mode
w̃

g

r in terms of phase angle and amplitude are

w̃
g

r (x, y)=
w̃r (x, y) eiumin

=w̃r (xmax , ymax )=
, (32)

where
g

denotes normalized values, = = is the operator for absolute value, umin is the rotating
angle used for normalization, and (xmax , ymax ) indicates the location of the largest flexural
amplitude. The normalization of amplitude is straight forward but the rotating angle umin

needs to be calculated such that the norm of the imaginary part of the normalized flexural
mode Im (w̃

g

eiu) is minimum.
Define a function F(u) that is the spatial mean-square value of Im(w̃ eiu) when integrated

over the plate surface, where u is an arbitrary angle of rotation:

F(u)=gg (Im (w̃ eiu))2 dx dy=gg (Re (w̃) sin u+Im (w̃) cos u)2 dx dy. (33)

Define umin as the angle when F(u) reaches its minimum value. A necessary condition
derived from 1F(u)/1u=0 is

umin = 1
2 tan−1 $−2 ff Re (w̃) Im (w̃) dx dy

ff [Re (w̃)2 − Im (w̃)2] dx dy%. (34)

The angle has to be examined by the following expression to ensure that F(umin ) is indeed
the minimum value instead of being maximum:

12F(umin )
1u2 =2 gg [(Re (w̃) cos u−Im (w̃) sin u)2

− (Re (w̃) sin u+Im (w̃) cos u)2] dx dyq 0. (35)

Otherwise, umin must be rotated by p/2. Note that when the plate surface mode shape is
described in terms of discrete points, for example in the measured data-set, the integration
operator of equations (33–35) is replaced by a double summation.

After normalization, the real part (Re) and the imaginary part (Im) of predicted mode
shapes can be compared with those measured. Figure 8 shows the real part of the
normalized mode shape for mode (1, 1). Note that the real parts of the first mode shapes
are almost the same for all five cases. Figures 9–13 show the imaginary part of the
measured and predicted mode shapes for all five cases. It seems that the imaginary parts
vary slightly depending on the damping configuration. Comparison between predictions
and measurements again shows excellent agreement for each case.

7. DESIGN STUDY: ADDITIVE EFFECT OF PATCHES

Cases A, B and C are further examined to see how the damping patches add modal
damping to the plate. Since Case C is a combination of Cases A and B, modal loss factors
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of Case C may be estimated by using the results of Cases A and B in a weighted additive
manner; this procedure was introduced earlier in reference [1] with application to beams:

hr,C = arhr,A + brhr, B, (36)

where subscripts A, B and C are the case designations defined earlier and ar and br are
the weighting factors for mode r. Note that ar and br can be obtained using the analytical
method, and sample values are listed in Table 7. However, practically it is more convenient
to use the simple additive estimation procedure where ar = br =1. Table 8 shows the
comparison of both weighted and simple additive estimations with calculated values of hr,C.
Errors introduced by the simple additive estimation method are less than 10% for most
of the modes.

Both estimation procedures are next applied to our benchmark experimental study but
the weighting factors are again obtained from the analytical model. Table 9 compares both
estimations with measurements. It is seen that both methods provide reasonable estimates
except for the first two modes. It may be explained from the fact that the base plate used
for the experimental studies (Case D in Figure 5 and Table 6) has high inherent damping,
especially at r=1, 2. Therefore, the two estimation methods are modified and the inherent
damping must be taken into account in an additive manner. Measured modal loss factors
are considered to have contributions from inherent (I) damping of the base plate and
applied patch damping (A, B or C) based on a simple additive estimation method:

hr,AI = hr,I + hr,A, hr,BI = hr,I + hr,B, hr,CI = hr,I + hr,C, (37a–c)

The values of inherent damping hr,I are found from the modal measurements on the
baseline case. A refined estimate for the modal damping of Case C is introduced based
on the weighted additive method as

hr,CI = irhr,I + arhr,A + brhr,B

= irhr,I + ar (hr,AI − hr,I)+ br (hr,BI − hr,I), (38)

where ir is the weighting factor for inherent damping whose value is taken as unity here.
Table 10 shows estimates with inherent damping considered by both weighted and simple
additive methods. In comparison with measurements, it is seen that, unlike the methods
without inherent damping, both methods underestimate modal loss factors especially for
the first two modes. Note that in Table 10 the calculated values from the analytical method
also include inherent damping found in measurements. Tables 9 and 10 show that the
estimate of second mode is considerably improved when the inherent damping is
considered. Minor changes in other modes are seen. Overall, it is concluded that the
additive estimation is a reasonable design prediction scheme but suitable weighting factors
should be needed for improvements.

8. CONCLUSION

A new analytical model of a rectangular plate with multiple constrained layer damping
patches has been developed to predict complex eigensolutions. Comparison with the work
of three prior investigators [4, 5] on a simply supported plate validates the model for
limiting case of full coverage. Analytical predictions of natural frequencies, modal loss
factors and complex modes for a rectangular plate with one or two patches are in excellent
agreement with modal measurements. In addition, a normalization scheme for complex
mode shapes has been developed for comparing a measured and predicted mode shapes.
A parametric design study has also been performed for a plate with two damping patches.
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Again, good agreement is seen between theory, experiment and simplified estimation
methods.

The method proposed in this article illustrates the importance of the kinematic
relationships between flexural deformation shapes and other deformation variables
including shear deformations of the viscoelastic core which are the major contributors to
the overall energy dissipation. The visualization of the flexural mode and its associated shear
deformations modes may explain why a damping patch at a certain location results in higher
damping performance for a certain mode than at other patch locations. Further work is
needed to optimize the selective damping treatment concept [7]. Also, the availability of the
complex mode shapes will assist in the calculation of the structural intensities [8].
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APPENDIX: LIST OF SYMBOLS

A,B,C,D,E damping cases of benchmark experiments
A governing equation matrix
a,b,c cofficient vectors
a,b,c coefficients
B governing equation vector
C coefficient vector
d spatial matrix
d spatial constant
E elasticity matrix
E Young’s modulus
e elasticity ratio E3A3/E1A1

F function used to normalize modes
f frequency (Hz)
G Shear modulus
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H inertia matrix
H thickness parameter (h1 +2h2 + h3)/2
h thickness
i z−1
K stiffness matrix
l length
M mass matrix
Np total number of patches
Ns , Nx , Ny total number of shape functions
q generalized displacement vector
q generalized displacement
q eigenvector
r deformation vector
S admissible shape function matrix
T kinetic energy
u,v in-plane or longitudinal displacement
U potential or strain energy
V transfer matrix
w flexural displacement
X,Y shape function vectors in x and y
x,y,z spatial coordinates
a.b,i modal weighting factors
F shape function vector
f shape function
g shear deformation
l eigenvalue
v frequency (rad/s)
h loss factor
r mass density
C trial function vector
c rotation
u rotation angle used to normalize complex mode

Operators

Col matrix operator
D differential operator matrix
Im imaginary part
Re real part
1 differential operator
> absolute value

Superscripts

p patch number
T transpose
0 complex valued
g normalized quantity

Subscripts

A,B type of damping patch
C damping Case C
I inherent damping
i layer number
k,m,n admissible function number
max maximmum
min minimum
r modal index
u,v, in plane motion
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x,y,z spatial coordinates
w flexural motion
g shear deformation
c rotation
1 layer 1 (elastic constraining layer)
2 layer 2 (viscoelastic constrained layer)
3 layer 3 (base structure)


